921 research outputs found

    Fisher information in quantum statistics

    Full text link
    Braunstein and Caves (1994) proposed to use Helstrom's {\em quantum information} number to define, meaningfully, a metric on the set of all possible states of a given quantum system. They showed that the quantum information is nothing else than the maximal Fisher information in a measurement of the quantum system, maximized over all possible measurements. Combining this fact with classical statistical results, they argued that the quantum information determines the asymptotically optimal rate at which neighbouring states on some smooth curve can be distinguished, based on arbitrary measurements on nn identical copies of the given quantum system. We show that the measurement which maximizes the Fisher information typically depends on the true, unknown, state of the quantum system. We close the resulting loophole in the argument by showing that one can still achieve the same, optimal, rate of distinguishability, by a two stage adaptive measurement procedure. When we consider states lying not on a smooth curve, but on a manifold of higher dimension, the situation becomes much more complex. We show that the notion of ``distinguishability of close-by states'' depends strongly on the measurement resources one allows oneself, and on a further specification of the task at hand. The quantum information matrix no longer seems to play a central role.Comment: This version replaces the previous versions of February 1999 (titled 'An Example of Non-Attainability of Expected Quantum Information') and that of November 1999. Proofs and results are much improved. To appear in J. Phys.

    Option Pricing in Multivariate Stochastic Volatility Models of OU Type

    Full text link
    We present a multivariate stochastic volatility model with leverage, which is flexible enough to recapture the individual dynamics as well as the interdependencies between several assets while still being highly analytically tractable. First we derive the characteristic function and give conditions that ensure its analyticity and absolute integrability in some open complex strip around zero. Therefore we can use Fourier methods to compute the prices of multi-asset options efficiently. To show the applicability of our results, we propose a concrete specification, the OU-Wishart model, where the dynamics of each individual asset coincide with the popular Gamma-OU BNS model. This model can be well calibrated to market prices, which we illustrate with an example using options on the exchange rates of some major currencies. Finally, we show that covariance swaps can also be priced in closed form.Comment: 28 pages, 5 figures, to appear in SIAM Journal on Financial Mathematic

    The Wishart short rate model

    Full text link
    We consider a short rate model, driven by a stochastic process on the cone of positive semidefinite matrices. We derive sufficient conditions ensuring that the model replicates normal, inverse or humped yield curves

    Analysis of a convenient information bound for general quantum channels

    Full text link
    Open questions from Sarovar and Milburn (2006 J.Phys. A: Math. Gen. 39 8487) are answered. Sarovar and Milburn derived a convenient upper bound for the Fisher information of a one-parameter quantum channel. They showed that for quasi-classical models their bound is achievable and they gave a necessary and sufficient condition for positive operator-valued measures (POVMs) attaining this bound. They asked (i) whether their bound is attainable more generally, (ii) whether explicit expressions for optimal POVMs can be derived from the attainability condition. We show that the symmetric logarithmic derivative (SLD) quantum information is less than or equal to the SM bound, i.e.\ H(θ)≤CΥ(θ)H(\theta) \leq C_{\Upsilon}(\theta) and we find conditions for equality. As the Fisher information is less than or equal to the SLD quantum information, i.e. FM(θ)≤H(θ)F_M(\theta) \leq H(\theta), we can deduce when equality holds in FM(θ)≤CΥ(θ)F_M(\theta) \leq C_{\Upsilon}(\theta). Equality does not hold for all channels. As a consequence, the attainability condition cannot be used to test for optimal POVMs for all channels. These results are extended to multi-parameter channels.Comment: 16 pages. Published version. Some of the lemmas have been corrected. New resuts have been added. Proofs are more rigorou

    Measuring Polynomial Invariants of Multi-Party Quantum States

    Get PDF
    We present networks for directly estimating the polynomial invariants of multi-party quantum states under local transformations. The structure of these networks is closely related to the structure of the invariants themselves and this lends a physical interpretation to these otherwise abstract mathematical quantities. Specifically, our networks estimate the invariants under local unitary (LU) transformations and under stochastic local operations and classical communication (SLOCC). Our networks can estimate the LU invariants for multi-party states, where each party can have a Hilbert space of arbitrary dimension and the SLOCC invariants for multi-qubit states. We analyze the statistical efficiency of our networks compared to methods based on estimating the state coefficients and calculating the invariants.Comment: 8 pages, 4 figures, RevTex4, v2 references update

    Preferred Measurements: Optimality and Stability in Quantum Parameter Estimation

    Full text link
    We explore precision in a measurement process incorporating pure probe states, unitary dynamics and complete measurements via a simple formalism. The concept of `information complement' is introduced. It undermines measurement precision and its minimization reveals the system properties at an optimal point. Maximally precise measurements can exhibit independence from the true value of the estimated parameter, but demanding this severely restricts the type of viable probe and dynamics, including the requirement that the Hamiltonian be block-diagonal in a basis of preferred measurements. The curvature of the information complement near a globally optimal point provides a new quantification of measurement stability.Comment: 4 pages, 2 figures, in submission. Substantial Extension and replacement of arXiv:0902.3260v1 in response to Referees' remark
    • …
    corecore